
# JVC SERVICE MANUAL PORTABLE MINIDISC PLAYER

# XM-PX70WT/BU/PN

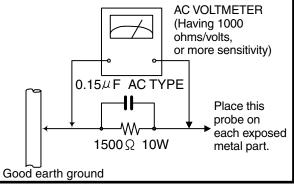


### Contents

| Safety Precautions                 | 1-2  |
|------------------------------------|------|
| Attention when                     |      |
| MD pick up is exchanged            | 1-3  |
| Disassembly method                 |      |
| Adjustment method ·····            | 1-9  |
| Maintenance of laser pickup        | 1-10 |
| Replacement of laser pickup ······ | 1-10 |
| Description of major ICs           | 1-11 |
| Attention when parts               |      |
| are exchanged                      | 1-24 |
|                                    |      |

### -Safety Precautions-

- 1. This design of this product contains special hardware and many circuits and components specially for safety purposes. For continued protection, no changes should be made to the original design unless authorized in writing by the manufacturer. Replacement parts must be identical to those used in the original circuits. Services should be performed by qualified personnel only.
- 2. Alterations of the design or circuitry of the product should not be made. Any design alterations of the product should not be made. Any design alterations or additions will void the manufacturer's warranty and will further relieve the manufacture of responsibility for personal injury or property damage resulting therefrom.
- 3. Many electrical and mechanical parts in the products have special safety-related characteristics. These characteristics are often not evident from visual inspection nor can the protection afforded by them necessarily be obtained by using replacement components rated for higher voltage, wattage, etc. Replacement parts which have these special safety characteristics are identified in the Parts List of Service Manual. Electrical components having such features are identified by shading on the schematics and by (A) on the Parts List in the Service Manual. The use of a substitute replacement which does not have the same safety characteristics as the recommended replacement parts shown in the Parts List of Service Manual may create shock, fire, or other hazards.
- 4. The leads in the products are routed and dressed with ties, clamps, tubings, barriers and the like to be separated from live parts, high temperature parts, moving parts and/or sharp edges for the prevention of electric shock and fire hazard. When service is required, the original lead routing and dress should be observed, and it should be confirmed that they have been returned to normal, after re-assembling.
- 5. Leakage currnet check (Electrical shock hazard testing) After re-assembling the product, always perform an isolation check on the exposed metal parts of the product (antenna terminals, knobs, metal cabinet, screw heads, headphone jack, control shafts, etc.) to be sure the product is safe to operate without danger of electrical shock. Do not use a line isolation transformer during this check.


Plug the AC line cord directly into the AC outlet. Using a "Leakage Current Tester", measure the leakage current from each exposed metal parts of the cabinet, particularly any exposed metal part having a return path to the chassis, to a known good earth ground. Any leakage current must not exceed 0.5mA AC (r.m.s.)

Alternate check method

Plug the AC line cord directly into the AC outlet. Use an AC voltmeter having, 1,000 ohms per volt or more sensitivity in the following manner. Connect a  $1,500\Omega$  10W resistor paralleled by a  $0.15\mu$ F AC-type capacitor between an exposed

metal part and a known good earth ground. Measure the AC voltage across the resistor with the AC voltmeter.

Move the resistor connection to eachexposed metal part, particularly any exposed metal part having a return path to the chassis, and meausre the AC voltage across the resistor. Now, reverse the plug in the AC outlet and repeat each measurement. voltage measured Any must not exceed 0.75 V AC (r.m.s.). This corresponds to 0.5 mA AC (r.m.s.).



### Warning

1. This equipment has been designed and manufactured to meet international safety standards.

- It is the legal responsibility of the repairer to ensure that these safety standards are maintained.
   Repairs must be made in accordance with the relevant safety standards.
- 4. It is essential that safety critical components are replaced by approved parts.
- 5. If mains voltage selector is provided, check setting for local voltage.

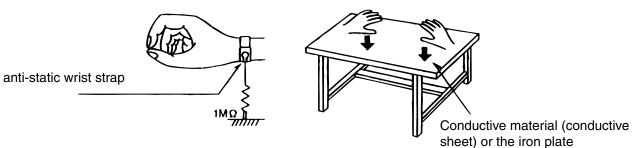
CAUTION Burrs formed during molding may be left over on some parts of the chassis. Therefore, pay attention to such burrs in the case of preforming repair of this system.

### Attention when MD pickup is exchanged

- About the static electricity protection measures
   The laser diode in the traverse unit (optical pick up) is easy to be destroyed by clothes and the human body
   to the electrified static electricity.
   Please note the explosion by static electricity when repairing.
- 2. About the earth processing for the electrostatic destruction prevention

In the equipment which uses an optical pick up (laser diode), an optical pick up is destroyed by the static electricity of the work environment.

Please do the earth processing and work.


1) Earth of work stand

Please pull the conductive material (conductive sheet) or the iron plate to the depository

place of the traverse unit (optical pick up), and take the earth to ground.

2) Human body earth


Please use the anti-static wrist strap to exhaust the electrified static electricity to the human body.



- 3. Handling the optical pick up
  - 1) Please return according to a correct procedure based on short processing after exchanging parts.
  - 2) Do not use a tester to check the condition of the laser diode in the optical pick up .The tester 's internal power source can easily destroy the laser diode.
- 4. Attention when unit is disassembled

Please refer to "Disassembling method" for how to detach .

- 1) Please be sure to solder before a flexible wire is removed from connector on a main printed circuit board as shown.
- if you removes without soldering.the MD picking up assembly might destroy
- 2) When installing , solder in the part of short round should be removed after a flexible wire is connected with connector.



### **Disassembly method**

### Removing the MD door assembly (See Fig.1 and 2)

- 1. Shift the door lever to open the door.
- 2. Remove the four screws **A** and detach the MD door assembly from the main body.

### Removing the holder assembly (See Fig.3 and 4)

- Prior to performing the following procedure, remove the MD door assembly.
- 1. Turn the holder assembly as shown in Fig.3.
- 2. Pull the side arm (L) marked **a** and remove outward. Open the holder assembly as shown in Fig.4.
- 3. Move the marked **b** in the direction of the arrow and release it from the shaft.
- 4. Move the part **c** inward and pull out the holder assembly from the shaft.

ATTENTION: When reassembling, first reattach the part **c** to the shaft of the chassis assembly. And next, fit the "U-shaped" notch to the shaft.

Part b

Holder assembly

"U-shaped" notch

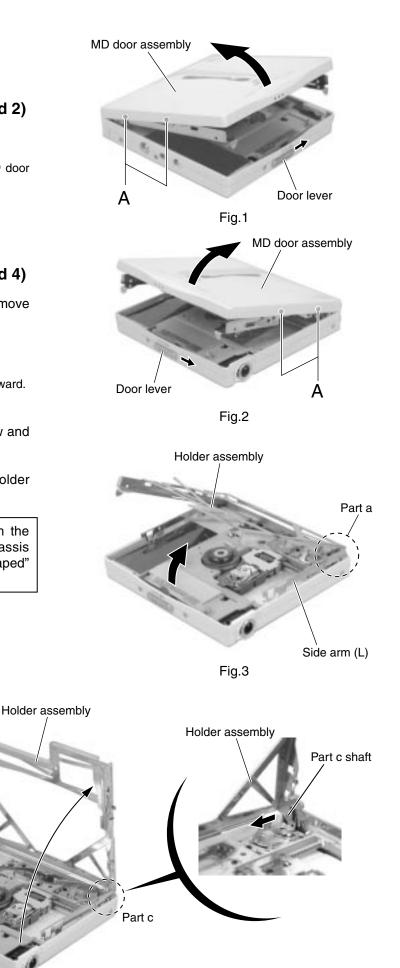
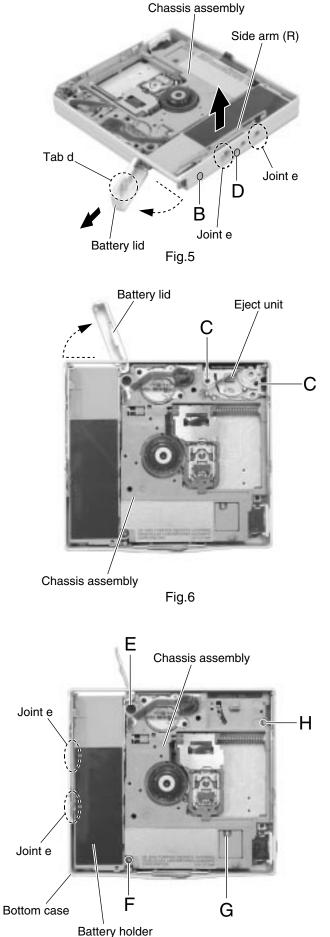




Fig.4

### Removing the chassis assembly (See Fig.5 to 7)

- Prior to performing the following procedure, remove the MD door assembly and the holder assembly.
- 1. Open the battery lid. Release the tab **d** and pull out the battery lid.
- 2. Remove the screw **B** and pull out the side arm (R) upward.
- 3. Remove the two screws **C** and pull out the eject unit.
- 4. Remove the screw **D**, **E**, **F**, **G** and **H** attaching the chassis assembly respectively.
- 5. Disengage the three joints **e** of the bottom case and the battery holder. Remove the chassis assembly and the jack cover at once.



# Removing the main board and the battery holder (See Fig.8 and 9)

• Prior to performing the following procedures, remove the MD door assembly, the holder assembly and the chassis assembly.

ATTENTION: Before disconnecting the flexible wire extending from the pickup, make sure to solder the short circuit round to prevent damage to the pickup.

- 1. Solder the short circuit round of the flexible wire on the main board.
- 2. Disconnect the flexible wires from connector CN301 and CN401 on the main board.
- 3. Remove the one screw I attaching the main board. Remove the main board with the battery holder .
- 4. Unsolder the four soldered parts **f** retaining the main board and the battery holder.

ATTENTION: When reassembling, connect the flexible wire extending from the pickup to the connector on the main board and unsolder the short circuit round.

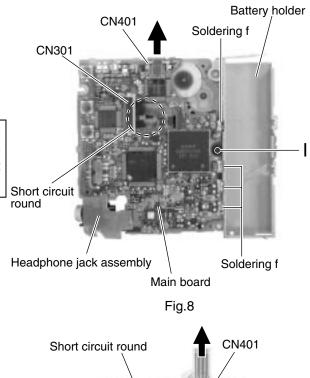
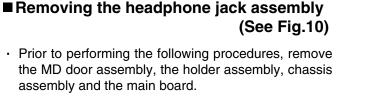
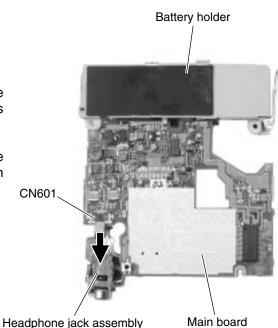





Fig.9

CN301



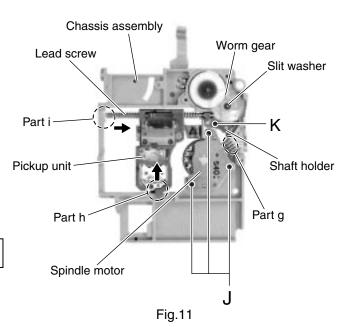
1. Disconnect the flexible wire extending from the headphone jack from connector CN601 on the main board.

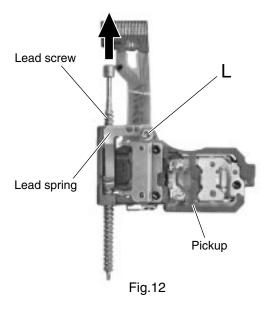




# <Removal of the MD mechanism section>

• Prior to performing the following procedures, remove the MD door assembly, the holder assembly, the chassis assembly and the main board.


### Removing the spindle motor


(See Fig.11)

1. Unsolder the part **g** on the flexible wire extending from the underside of the chassis assembly to the spindle motor.

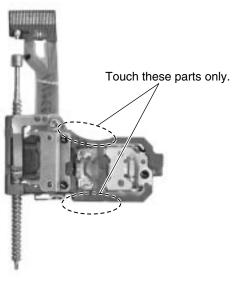
ATTENTION: Do not spill flux on the gear and others.

2. Remove the three screws **J** attaching the spindle motor.





## Removing the pickup unit (See Fig.11)


ATTENTION: When handling the pickup unit, touch the parts marked in Fig.13 only.

- 1. Remove the slit washer and the worm gear from the underside of the chassis assembly.
- 2. Remove the screw **K** attaching the shaft holder and draw out the shaft (lead screw).
- 3. Pull out the pickup unit and the lead screw while disengaging the part **h** and **i**.

### Removing the pickup (See Fig.12 and 13)

ATTENTION: When handling the pickup unit, touch the parts marked in Fig.13 only.

- 1. Remove the screw  ${\bm L}\,$  and the lead spring.
- 2. Pull out the shaft from the pickup.



### Removing the feed motor (See Fig.14)

- 1. Peel off the adhesive tape **j** on the flexible wire on the underside of the feed motor.
- 2. Unsolder soldering  ${\bf k}$  connecting the flexible wire to the feed motor.
- 3. Remove the two screws **M** attaching the feed motor.

ATTENTION: When reassembling, reattach the flexible wire with an adhesive tape and solder.

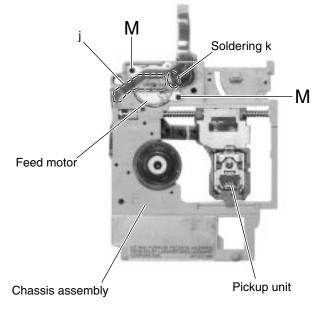
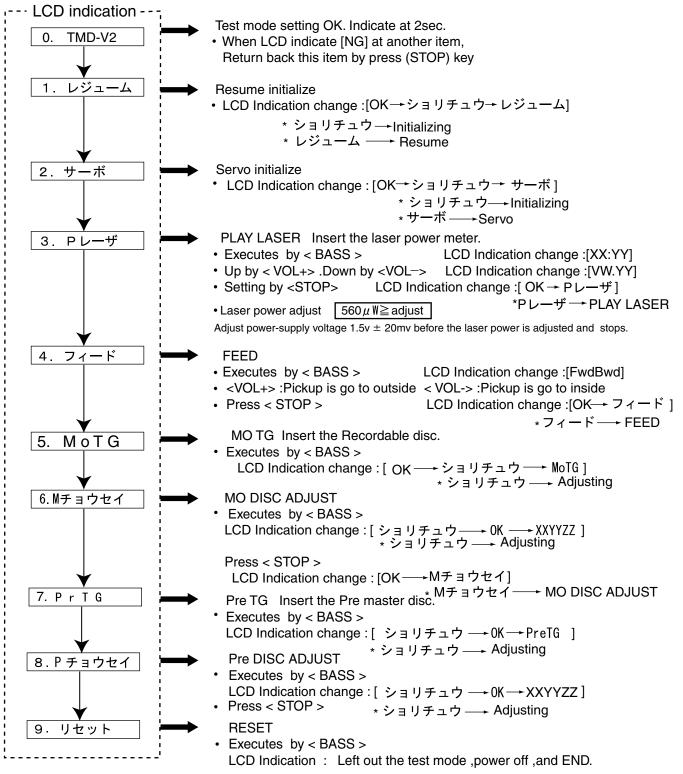
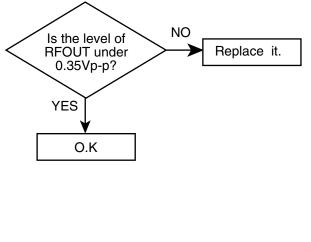



Fig.14

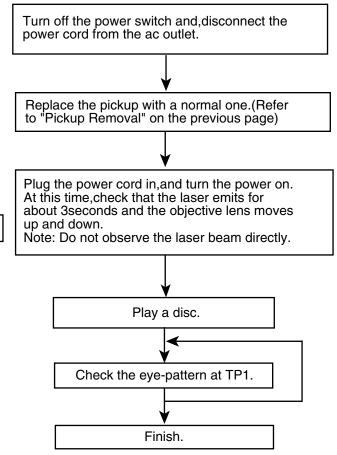

### Adjustment method

This model is auto adjustment by Remote Controller. Please adjust the attached remote controller.

- Equipments----- 1. Remote controller
- 2. DC power supply
- 4. MO disc (AU-1)
- 3. Laser power meter 5. Pre master disc (TGYS 1)


### <Test mode setting method>

Press < PLAY MODE + DISPLAY + BASS > and < PLAY >key together more than 3sec. at power off condition. < VOL- > → next item .< VOL+ >before item.




### Maintenance of laser pickup

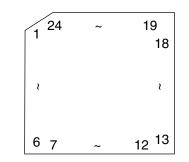
- Cleaning the pick up lens Before you replace the pick up, please try to clean the lens with a alcohol soaked cotton swab.
- (2) Life of the laser diode When the life of the laser diode has expired, the following symptoms will appear.
  - 1. The level of RF output (EFM output:ampli tude of eye pattern) will below.



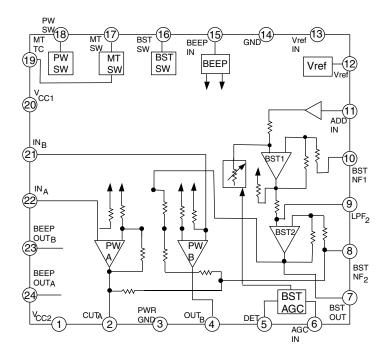
### **Replacement of laser pickup**



(3) Semi-fixed resistor on the APC PC board The semi-fixed resistor on the APC printed circuit board which is attached to the pickup is used to adjust the laser power. Since this adjustment should be performed to match the characteristics of the whole optical block, do not touch the semi-fixed resistor.

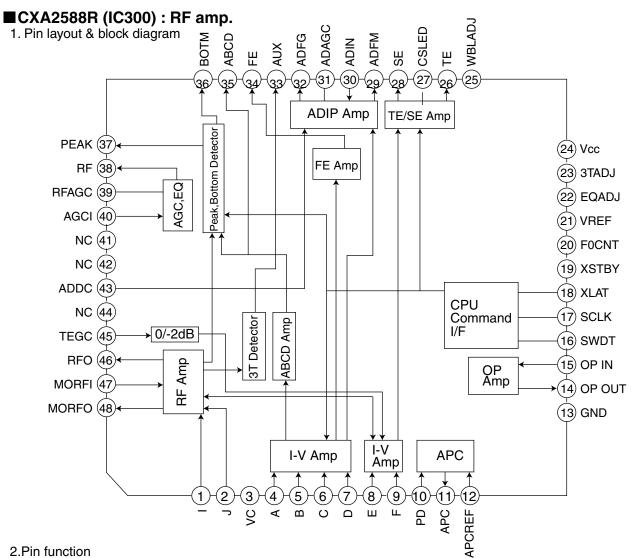

If the laser power is lower than the specified value, the laser diode is almost worn out, and the laser pickup should be replaced.

If the semi-fixed resistor is adjusted while the pickup is functioning normally, the laser pickup may be damaged due to excessive current.


### **Description of major ICs**

### JCV8002-W (IC601) : Head phone amp

1. Pin layout

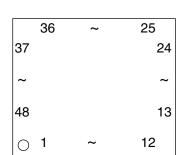



#### 2. Block diagram

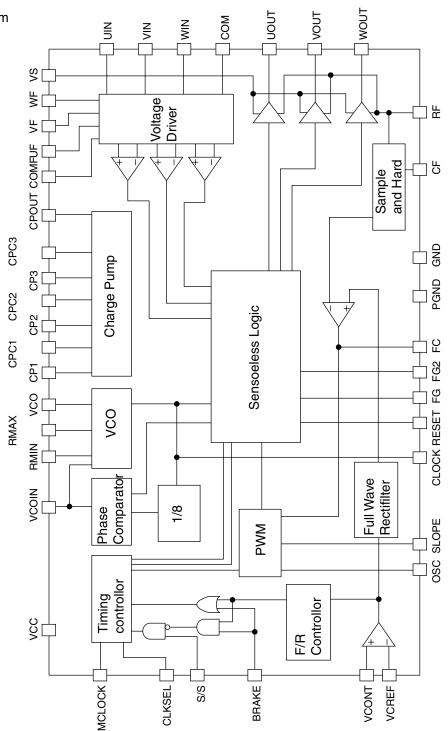


#### 3. Pin function

| Pin<br>no.     Symbol     FUNCTION       1     Vcc2     Vcc2 (+B) in power amplifier output steps       2     OUTA     Power amplifier output       3     PWR GND     GND in power amplifier output steps       4     OUTB     Power amplifier output |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2     OUTA     Power amplifier output       3     PWR GND     GND in power amplifier output steps       4     OUTB     Power amplifier output                                                                                                         |  |
| 3         PWR GND         GND in power amplifier output steps           4         OUT <sub>B</sub> Power amplifier output                                                                                                                             |  |
| 4 OUT <sub>B</sub> Power amplifier output                                                                                                                                                                                                             |  |
|                                                                                                                                                                                                                                                       |  |
| 5 DET Over the second based of the state of the set ACC                                                                                                                                                                                               |  |
| 5 DET Smoothness of level detection of boost AGC                                                                                                                                                                                                      |  |
| 6 AGC IN BST amplifier input signal level variable control by input lever to boost AGC input terminal                                                                                                                                                 |  |
| 7 BST OUT Output terminal of BST amplifier2                                                                                                                                                                                                           |  |
| 8 BST NF2 Terminal NF of BST amplifier2                                                                                                                                                                                                               |  |
| 9 LPF <sub>2</sub> Output BST amplifier1                                                                                                                                                                                                              |  |
| 10 BST NF1 NF of BST amplifier1                                                                                                                                                                                                                       |  |
| 11 ADD IN ADD amplifier input                                                                                                                                                                                                                         |  |
| 12 V <sub>ref</sub> Standard potential circuit                                                                                                                                                                                                        |  |
| 13 Vref IN Standard potential circuit                                                                                                                                                                                                                 |  |
| 14         GND         Power part input steps GND                                                                                                                                                                                                     |  |
| 15 BEEP IN Beep input terminal                                                                                                                                                                                                                        |  |
| 16 BST SW Beep output terminal                                                                                                                                                                                                                        |  |
| 17 MT SW Mute switch                                                                                                                                                                                                                                  |  |
| 18 PW SW Power On/OFF switch                                                                                                                                                                                                                          |  |
| 19 MT TC Mute smoothing Power mute switch                                                                                                                                                                                                             |  |
| 20 V <sub>CC1</sub> Main parts V <sub>CC</sub>                                                                                                                                                                                                        |  |
| 21 IN B Power amplifier input                                                                                                                                                                                                                         |  |
| 22 IN A Power amplifier input                                                                                                                                                                                                                         |  |
| 23 BEEP OUT B Beep output terminal                                                                                                                                                                                                                    |  |
| 24 BEEP OUT A Beep output terminal                                                                                                                                                                                                                    |  |




#### 2.Pin function

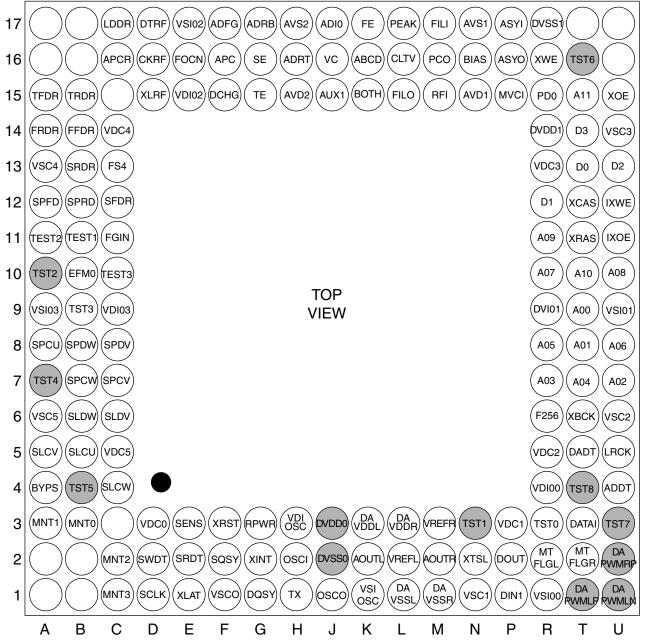

| Pin<br>No. | Symbol | I/O | Function                                             | Pin<br>No. | Symbol | I/O | Function                                                         |
|------------|--------|-----|------------------------------------------------------|------------|--------|-----|------------------------------------------------------------------|
| 1          | I      | Ι   | I-V converted RF signal I input                      | 25         | WBLADJ | I/O | BPF3T IF setting terminal                                        |
| 2          | J      | Ι   | I-V converted RF signal J input                      | 26         | TE     | О   | Tracking error signal output terminal                            |
| 3          | VC     | 0   | Vcc/2 voltage output                                 | 27         | CSLED  | -   | Sled error signal LPF capacitor connect terminal                 |
| 4          | А      | Ι   | A current input for main beam servo signal           | 28         | SE     | 0   | Sled error signal output terminal                                |
| 5          | В      | Ι   | B current input for main beam servo signal           | 29         | ADFM   | 0   | ADIP FM signal output terminal                                   |
| 6          | С      | Ι   | C current input for main beam servo signal           | 30         | ADIN   | Ι   | ADIP signal completer input terminal                             |
| 7          | D      | Ι   | D current input for main beam servo signal           | 31         | ADAGC  | -   | ADIP AGC capacitor connect terminal                              |
| 8          | E      | Ι   | E current input for side beam servo signal           | 32         | ADFG   | 0   | ADIP binary signal output                                        |
| 9          | F      | Ι   | F current input for side beam servo signal           | 33         | AUX    | 0   | I3 output/temp.signal output                                     |
| 10         | PD     | Ι   | Reflection light q'ty monitor signal input           | 34         | FE     | 0   | Focus error signal output                                        |
| 11         | APC    | 0   | Laser APC output                                     | 35         | ABCD   | 0   | Reflection light q'ty signal output for main beam servo detector |
| 12         | APCREF | Ι   | Ref. voltage input for laser power intensity setting | 36         | BOTM   | 0   | RF/ABCD bottom-hold signal output                                |
| 13         | GND    | -   | Ground                                               | 37         | PEAK   | 0   | RF/ABCD peak-hold signal output                                  |
| 14         | OPOUT  | 0   | Ope. amp output terminal                             | 38         | RF     | О   | RF equalizer output                                              |
| 15         | OPIN   | Ι   | 21dB ope. amp input terminal                         | 39         | RFAGC  | -   | RFAGC capacitor connection                                       |
| 16         | SWDT   | Ι   | Serial data input terminal                           | 40         | AGCI   | Ι   | RFAGC input                                                      |
| 17         | SCLK   | Ι   | Shift clock input terminal                           | 41         | NC     | -   | Non connect                                                      |
| 18         | XLAT   | Ι   | Latch input terminal                                 | 42         | NC     | -   | Non connect                                                      |
| 19         | XSTBY  | Ι   | Stand by setting terminal                            | 43         | ADDC   | I/O | ADIP amp. feedback circuit capacitor connection                  |
| 20         | F0CNT  | Ι   | F0 count setting terminal                            | 44         | NC     | -   | Non connection                                                   |
| 21         | VREF   | 0   | Reference voltage output terminal                    | 45         | TEGC   | Ι   | TE amp. gain switching                                           |
| 22         | EQADJ  | I/O | EQ IF setting terminal                               | 46         | RFO    | 0   | RF amp. output                                                   |
| 23         | 3TADJ  | I/O | BPF3T IF setting terminal                            | 47         | MORFI  | Ι   | Groove RF signal AC-coupled input                                |
| 24         | Vcc    | -   | Power supply                                         | 48         | MORFO  | 0   | Groove RF signal output                                          |

### CXA8059Q (IC450) : Motor driver





2. Block diagram




### 3.Pin function

| Pin<br>no. | Symbol | Function                                                                                   |
|------------|--------|--------------------------------------------------------------------------------------------|
| 1          | PGND   | The GND to guard the power stage.                                                          |
| 2          | COM    | The terminal to detect the voltage.                                                        |
| 3          | VS     | The terminal to supply the voltage for the power stage.                                    |
| 4          | CPOUT  | The terminal to connect the capacitor in the final charge pump.                            |
| 5          | CPC3   | The terminal to connect the capacitor in the third charge pump.                            |
| 6          | CP3    | The terminal to connect the capacitor in the third charge pump.                            |
| 7          | CPC2   | The terminal to connect the capacitor in the second charge pump.                           |
| 8          | CP2    | The terminal to connect the capacitor in the second charge pump.                           |
| 9          | CPC1   | The terminal to connect the capacitor in the first charge pump.                            |
| 10         | CP1    | The terminal to connect the capacitor in the first charge pump.                            |
| 11         | GND    | The GND for the part except the power section.                                             |
| 12         | S/S    | The terminal for start and stop.                                                           |
| 13         | BRAKE  | The terminal for braking.                                                                  |
| 14         | VCONT  | The terminal for controlling velocity.                                                     |
| 15         | VCREF  | The terminal as referable voltage of controlling velocity.                                 |
| 16         | FC     | The terminal to compensate the frequency characteristics of the loop controlling velocity. |
| 17         | CF     | The terminal of sampling and holding for detecting motor current.                          |
| 18         | FG     | The terminal to output FG pulse.                                                           |
| 19         | FG2    | The terminal to output FG pulse divided Pin15 signal by 2.                                 |
| 20         | VCO    | The terminal to set oscillation frequency of VCO.                                          |
| 21         | RMAX   | The terminal to set maximum oscillation frequency of VCO.                                  |
| 22         | RMIN   | The terminal to set minimum oscillation frequency of VCO.                                  |
| 23         | VCOIN  | The terminal to control oscillation frequency of VCO.                                      |
| 24         | CLKSEL | The terminal to select inside and outside clock.                                           |
| 25         | OSC    | The terminal to oscillation sawtooth for PWM signal.                                       |
| 26         | SLOPE  | The terminal to oscillation sawtooth for soft-switching signal.                            |
| 27         | CLOCK  | The terminal to monitor CLOCK signal.                                                      |
| 28         | GND    | The GND for the part except the power section.                                             |
| 29         | WF     | The terminal to shape waveform of motor voltage.                                           |
| 30         | VF     | The terminal to shape waveform of motor voltage.                                           |
| 31         | UF     | The terminal to shape waveform of motor voltage.                                           |
| 32         | COMF   | The terminal to shape waveform of motor voltage.                                           |
| 33         | VCC    | The terminal to supply the voltage except the power section.                               |
|            | MCLOCK | The terminal to input clock.                                                               |
| 35         | VS     | The terminal to supply the voltage for the power stage.                                    |
| 36         | RESET  | The terminal to reset a register for checking the movement.                                |
| 37         | RF     | The terminal to monitor current.                                                           |
| 38         | NC     | Non connect                                                                                |
| 39         | NC     | Non connect                                                                                |
| 40         | WIN    | The terminal to sense the back electro magnetic force of coils.                            |
| 41         | WOUT   | The terminal to supply the motor current.                                                  |
| 42         | VIN    | The terminal to sense the back electro magnetic force of coils.                            |
| 43         | VOUT   | The terminal to supply the motor current.                                                  |
| 44         | UIN    | The terminal to sense the back electro magnetic force of coils.                            |
| 45         | UOUT   | The terminal to supply the motor current.                                                  |
| 46         | NC     | Non connect                                                                                |
| 47         | NC     | Non connect                                                                                |
| 48         | RF     | The terminal to monitor current.                                                           |

### CXD2672GA(IC351):DSP

1.Pin layout

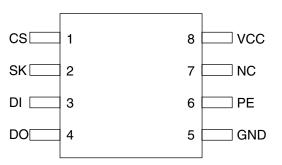


| 2.Pin | function | (1) |
|-------|----------|-----|
|-------|----------|-----|

| Pin<br>No. | Symbol |     |                                   |  |
|------------|--------|-----|-----------------------------------|--|
| A-1        |        | 1/0 | Function                          |  |
| A-2        | NC     | -   | Open                              |  |
| A-3        | NC     | -   | Open                              |  |
| B-1        | MNT1   | 0   | Monitor output                    |  |
| B-2        | NC     | -   | Open                              |  |
| B-3        | NC     | -   | Open                              |  |
| C-1        | MNT0   | I/O | Monitor in/output                 |  |
| C-2        | MNT3   | 0   | Monitor output                    |  |
| C-3        | MNT2   | 0   | Monitor output                    |  |
| D-1        | NC     | -   | Open                              |  |
| D-2        | SCLK   | I   | Micon serial bus clock input      |  |
| D-3        | SWDT   | I   | Micon serial bus data write input |  |
|            | VDC0   | -   | Internal logic VDD(1.8V)          |  |

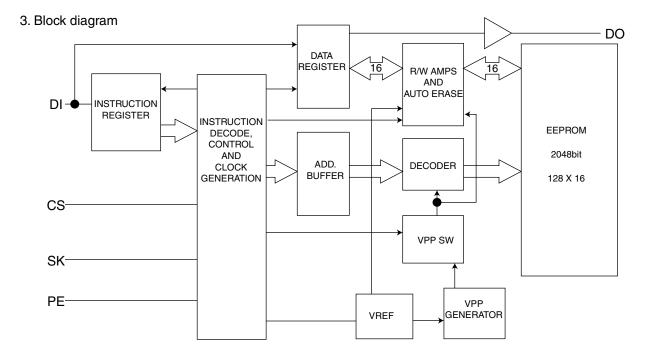
| 2.Pin   | function(2) |     |                                                               |
|---------|-------------|-----|---------------------------------------------------------------|
| Pin No. | Symbol      | I/O | Function                                                      |
| E-1     | XLAT        | Ι   | Micon serial bus latch input                                  |
| E-2     | SRDT        | 0   | Micon serial bus data read out output                         |
| E-3     | SENS        | 0   | Internal output of micon serial bus address                   |
| F-1     | VSC0        | -   | Internal logic GND                                            |
| F-2     | SQSY        | 0   | PTGR=0 ADIPsink output / PTGR=1 DISC SUB-Q sink output        |
| F-3     | XRST        | Ι   | Reset input L:reset                                           |
| G-1     | DQSY        | 0   | Ubit SUB-Q sink output from digital audio input from MD or CD |
| G-2     | XINT        | 0   | Request status output L:request status                        |
| G-3     | RPWR        | Ι   | Laser power select input (H=rec power / L=playback power)     |
| H-1     | TX          | Ι   | Output permit input of recorded data                          |
| H-2     | OSCI        | Ι   | X'tal osc circuit input                                       |
| H-3     | VDIOSC      | -   | OSC sel VDD (2.5V)                                            |
| J-1     | OSCO        | 0   | X'tal osc circuit output                                      |
| J-2     | DVSS0       | -   | Internal 16bit DRAM GND                                       |
| J-3     | DVDD0       | -   | Internal 16bit DRAM GND                                       |
| K-1     | VSIOSC      | -   | OSC sel GND                                                   |
| K-2     | AOUTL       | 0   | Internal DAC Lch output                                       |
| K-3     | DAVDDL      | -   | Internal DAC VDD (Lch,2.5V)                                   |
| L-1     | DAVSSL      | -   | Internal DAC GND                                              |
| L-2     | VREFL       | 0   | Internal DAC GND VREF(Lch)                                    |
| L-3     | DAVDDR      | -   | Internal DAC VDD (Rch,2.5V)                                   |
| M-1     | DAVSSR      | -   | Internal DAC GND (Rch)                                        |
| M-2     | AOUTR       | 0   | Internal DAC Rch output                                       |
| M-3     | VREFR       | 0   | Internal DAC VREF (Rch)                                       |
| N-1     | VSC1        | -   | Internal logic GND                                            |
| N-2     | XTSL        | Ι   | X'tal frequency select (L=45.1584MHz/H=22.5792MHz)            |
| N-3     | TST1        | Ι   | Test terminal Connect to GND                                  |
| P-1     | DIN1        | Ι   | Digital audio input Outer I/F mode EXRQ input                 |
| P-2     | DOUT        | 0   | Digital audio output                                          |
| P-3     | VDC1        | -   | Internal logic VDD (1.8V)                                     |
| U-1     | DAPWMLN     | 0   | Internal DAC PWM output L-                                    |
| T-1     | DAPWMLP     | 0   | Internal DAC PWM output L+                                    |
| R-1     | VSIO0       | -   | 2.5V I/O VSS                                                  |
| U-2     | DAPWMRP     | 0   | Internal DAC PWM output R+                                    |
| T-2     | MTFLGR      | 0   | Internal DAC zero detect flag (Rch)                           |
| R-2     | MTFLGL      | 0   | Internal DAC zero detect flag (Lch)                           |
| U-3     | TST7        | Ι   | Test terminal Connect to GND                                  |
| T-3     | DATAI       | Ι   | Serial data input                                             |
| R-3     | TST0        | 0   | Open                                                          |
| U-4     | ADDT        | Ι   | Data input from A/D converter                                 |
| T-4     | TST8        | Ι   | Test terminal Connect to GND                                  |
| R-4     | VDIO0       | -   | 2.5V I/O VDD                                                  |
| U-5     | LRCK        | 0   | LR clock(44.1kHz) for A/D, internal DAC                       |
| T-5     | DADT        | 0   | Data output for internal DAC / Internal DAC PWM output R-     |
| R-5     | VDC2        | -   | Internal logic VDD (1.8V)                                     |
| U-6     | VSC2        | -   | Internal logic GND                                            |
| T-6     | XBCK        | 0   | A/D, internal DAC bit clock (2.8224MHz)                       |
| R-6     | F256        | 0   | 11.2896MHz clock output (X'tal)                               |
| U-7     | A02         | 0   | External DRAM address output                                  |
| T-7     | A04         | 0   | External DRAM address output                                  |
| R-7     | A03         | 0   | External DRAM address output                                  |
| U-8     | A06         | 0   | External DRAM address output                                  |
| T-8     | A01         | 0   | External DRAM address output                                  |
| R-8     | A05         | 0   | External DRAM address output                                  |

2.Pin function (3)


|         | unction (3) |        |                                                                          |
|---------|-------------|--------|--------------------------------------------------------------------------|
| Pin No. | Symbol      | I/O    | Function                                                                 |
| U-9     | VSIO1       | -      | 2.5V I/O sel Vss                                                         |
| T-9     | A00         | 0      | External DRAM address output                                             |
| R-9     | ADIO1       | -      | 2.5V I/O sel VDD                                                         |
| U-10    | A08         | 0      | External DRAM address output                                             |
| T-10    | A10         | 0      | External DRAM address output                                             |
| R-10    | A07         | 0      | External DRAM address output                                             |
| U-11    | IXOE        | 0      | Open                                                                     |
| T-11    | XRAS        | 0      | External DRAM RAS output                                                 |
| R-11    | A09         | 0      | External DRAM address output                                             |
| U-12    | IXWE        | 0      | Open                                                                     |
| T-12    | XCAS        | 0      | External DRAM CAS output                                                 |
| R-12    | D1          | 1/0    | External DRAM data input/output                                          |
| U-13    | D1<br>D2    | 1/O    | External DRAM data input/output                                          |
| T-13    |             |        | External DRAM data input/output                                          |
|         | D0          | I/O    | · ·                                                                      |
| R-13    | VDC3        | -      | Internal logic VDD                                                       |
| U-14    | VSC3        | -      | Internal logic GND                                                       |
| T-14    | D3          | I/O    | External DRAM data input/output                                          |
| R-14    | DVDD1       | -      | Internal 16Mbit DRAM VDD                                                 |
| U-17    | NC          | -      | Open                                                                     |
| U-16    | NC          | -      | Open                                                                     |
| U-15    | XOE         | 0      | External DRAM output chip enable output                                  |
| T-17    | NC          | -      | Open                                                                     |
| T-16    | TST6        | 0      | Open                                                                     |
| T-15    | A11         | 0      | Open                                                                     |
| R-17    | DVSS1       | -      | Internal 16Mbit DRAM GND                                                 |
| R-16    | XWE         | 0      | External DRAM write enable output                                        |
| R-15    | PDO         | 0      | Analog PLL phase compare output                                          |
| P-17    | ASYI        | 1      | Playback EFM comparator slice level input                                |
| P-16    | ASYO        | 0      | Playback EFM binarization signal output                                  |
| P-15    | MVCI        | 1      | Clock input from external VCO                                            |
| N-17    | AVS1        | -      | Analog GND                                                               |
| N-16    | BIAS        | 1      | Playback EFM comparator bias current input                               |
| N-15    | AVD1        | 0      | Analog power supply (2.5V)                                               |
| M-17    | FILI        |        | Filter input for playback EFM system mastering PLL                       |
|         |             | 1      | Phase comparison output for playback EFM system mastering PLL            |
| M-16    | PCO         |        |                                                                          |
| M-15    | RFI         |        | Playback EFM RF signal input                                             |
| L-17    | PEAK        | 0      | Peak holding input optical amount signal                                 |
| L-16    | CLTV        |        | Internal VCO control voltage input for playback EFM system mastering PLL |
| L-15    | FILO        |        | Filter output for playback EFN system mastering PLL                      |
| K-17    | FE          |        | Focus error signal input                                                 |
| K-16    | ABCD        | 0      | Optical amount signal input                                              |
| K-15    | BOTOM       |        | Bottom holding input of optical amount signal                            |
| J-17    | ADIO        | I      | Open                                                                     |
| J-16    | VC          | -      | Middle point voltage input                                               |
| J-15    | AUX1        | Ι      | Assistance A/D input                                                     |
| H-17    | AVS2        | -      | Analog GND                                                               |
| H-16    | ADRT        | Ι      | A/D converter operation range upper bound voltage input                  |
| H-15    | AVD2        | -      | Analog power supply (2.5V)                                               |
| G-17    | ADRB        | I      | A/D converter operation range lower bound voltage input                  |
| G-16    | SE          | I      | Sled error input                                                         |
| G-15    | TE          | 1      | Tracking error input                                                     |
| F-17    | ADFG        |        | ADIP binary-coded FM signal input                                        |
| F-16    | APC         | ·<br>· | Error signal input for laser digital APC                                 |
| F-15    | DCHG        | 1      | Connects with an analog power supply of low impedance                    |
| 1-13    | Dona        | •      | Connecto with an analog power supply of low impedance                    |

### 2.Pin function (4)

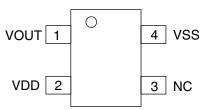
| Pin No.    | Symbol       | I/O | Function                                                |
|------------|--------------|-----|---------------------------------------------------------|
| E-17       | VSIO2        | -   | 2.5V I/O Vss                                            |
| E-16       | FOCN         | 0   | Filter cutoff control output                            |
| E-15       | VDIO2        | -   | 2.5V I/O VDD                                            |
| D-17       | DTRF         | 0   | Controller data output                                  |
| D-16       | CKRF         | 0   | Controller clock output                                 |
| D-15       | XLRF         | 0   | Controller latch output                                 |
| A-17       | NC           | -   | Open                                                    |
| B-17       | NC           | _   | Open                                                    |
| C-17       |              | 0   | Laser digital APC PWM output                            |
| A-16       | NC           | -   | Open                                                    |
| B-16       | NC           | -   | Open                                                    |
| C-16       | APCR         | 0   | Laser APC reference PWM output                          |
| A-15       | TFDR         | 0   | Tracking servo drive PWM output (+)                     |
| B-15       | TRDR         | 0   | Tracking servo drive PWM output (-)                     |
| C-15       | NC           | -   | Open                                                    |
| A-14       | FRDR         | 0   | Focus servo drive PWM output (-)                        |
| B-14       | FFDR         | 0   | Focus servo drive PWM output (-)                        |
| C-14       | VDC4         |     | Internal logic VDD (1.8V)                               |
| A-13       | VDC4<br>VSC4 | -   | Internal logic GND                                      |
| B-13       | SRDR         | 0   | Sled servo drive PWM output (-)                         |
| C-13       | FS4          | 0   | 176.4kHz clock output (X'tal system)                    |
| A-12       | SPFD         | 0   | Spindle servo drive output                              |
| B-12       | SPRD         | 0   | Spindle servo drive output                              |
| C-12       | SFRD         | 0   | Sled servo drive PWM output (+)                         |
| A-11       | TEST2        |     | Test terminal Connect to GND                            |
| B-11       | TEST2        |     | Test terminal Connect to GND                            |
| C-11       | FGIN         |     | Spindle CAV servo FG input                              |
| A-10       | TST2         | 0   | Test terminal Open                                      |
| B-10       | EFMO         | 0   | EFM output at recording                                 |
| C-10       | TEST3        |     | Test terminal Connect to GND                            |
| A-9        | VSIO3        |     | 2.5V I/O Vss                                            |
| B-9        | TST3         | -   |                                                         |
| С-9<br>С-9 |              | 0   | •                                                       |
|            | VDIO3        | -   | 2.5V I/O VDD                                            |
| A-8        | SPCU         |     | Blush less spindle motor drive comparate input (U)      |
| B-8        | SPDW         | 0   | Blush less spindle motor 3 phase drive truth output (W) |
| C-8        | SPDV         | 0   | Blush less spindle motor 3 phase drive truth output (V) |
| A-7        | TST4<br>SPCW | 0   | Test terminal Open                                      |
| B-7        |              |     | Blush less spindle motor drive comparete input (W)      |
| C-7        | SPCV         |     | Blush less spindle motor drive comparate input (V)      |
| A-6        | VSC5         | -   | Internal logic GND                                      |
| B-6        | SLDW         | 0   | Blush less sled motor 3 phase drive truth output (W)    |
| C-6        | SLDV         | 0   | Blush less sled motor 3 phase drive truth output (V)    |
| A-5        | SLCV         |     | Blush less sled motor 3 phase drive comparate input (V) |
| B-5        | SLCU         |     | Blush less sled motor 3 phase drive comparate input (U) |
| C-5        | VDC5         | -   | Internal logic VDD (1.8V)                               |
| A-4        | BYPS         | 0   | Open                                                    |
| B-4        | TST5         | 0   | Test terminal Open                                      |
| C-4        | SLCW         | I/O | Blush less sled motor 3 phase drive comparate input     |


### ■ AK93C55BH-W (IC502) : EEPROM

1. Pin layout



#### 2.Pin function


| Pin name | Enction            |  |  |
|----------|--------------------|--|--|
|          |                    |  |  |
| CS       | Chip select        |  |  |
| SK       | Serial data clock  |  |  |
| DI       | Serial data input  |  |  |
| DO       | Serial data output |  |  |
| PE       | Program enable     |  |  |
| VCC      | Ground             |  |  |
| GND      | Power supply       |  |  |
| NC       | Not connected      |  |  |



1-19

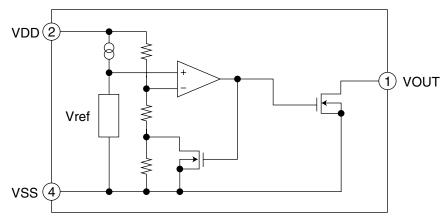
### ■IC-PST3421U-X(IC504):System reset

1.Pin layout



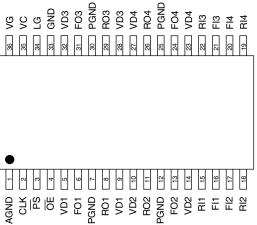
2.Pin function

 Pin No.
 Symbol
 Function


 1
 VOUT
 Reset signal output terminal

 2
 VDD
 Power supply terminal

 3
 NC
 Non connect


 4
 VSS
 VSS terminal

3.Block diagram



### MPC17A139MTB-X (IC400) : 4ch bridge driver

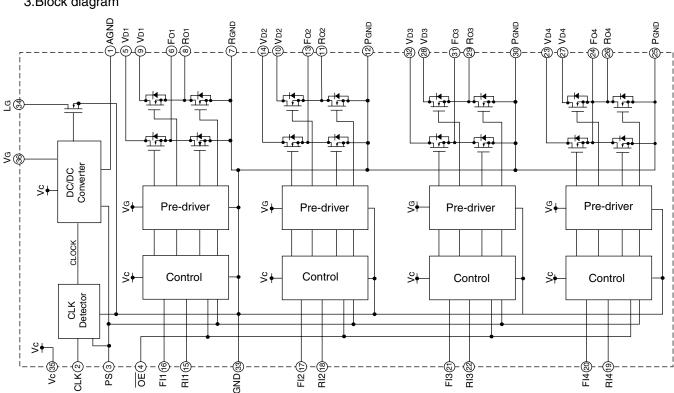




2.Pin function

Driver section

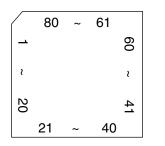
| PS | ,OE | INF | TU | OUTPUT 1~4 |    |
|----|-----|-----|----|------------|----|
| PS | ŌĒ  | FI  | RI | FO         | RO |
| Н  | L   | L   | L  | L          | L  |
| Н  | L   | L   | Н  | L          | Н  |
| Н  | L   | Н   | L  | Η          | L  |
| Н  | L   | Η   | Η  | L          | L  |
| Н  | Н   | Х   | Х  | L          | L  |
| L  | X   | Х   | Х  | Z          | Z  |


X:Don't Care

Z:High Impedance

| Clock detector section |    |             |  |  |  |  |  |
|------------------------|----|-------------|--|--|--|--|--|
| CLK                    | PS | OSC circuit |  |  |  |  |  |
| Х                      | Н  | Auto        |  |  |  |  |  |
|                        | Н  | Syncro      |  |  |  |  |  |

Х

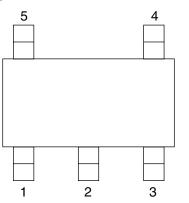

Stop





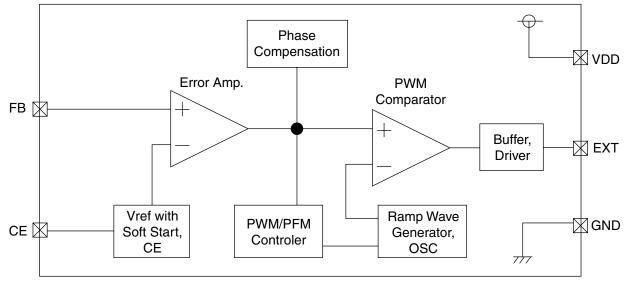
### ■ UPD784225GK-617C(IC501):CPU

1.Pin layout




### 2.Pin function

| Pin<br>No. | Symbol  | Function                               | Pin<br>No. | Symbol  | Function                             |  |
|------------|---------|----------------------------------------|------------|---------|--------------------------------------|--|
| 1          | ANI5    | GND                                    | 41         | -       | Non connect                          |  |
| 2          | ANI6    | GND                                    | 42         | -       | Non connect                          |  |
| 3          | SPSEL   | Non connect                            | 43         | -       | Non connect                          |  |
| 4          | AVSS    | GND                                    | 44         | -       | Test terminal                        |  |
| 5          | -       | Non connect                            | 45         | DPON    | Test terminal                        |  |
| 6          | VADJ    | Voltage adjust                         | 46         | -       | Non connect                          |  |
| 7          | AVREF1  | Analog reference voltage               | 47         | RFVCTL  | Test terminal                        |  |
| 8          | RMRX    | Remocon data input terminal            | 48         | PSAVE   | Non connect                          |  |
| 9          | RMTX    | Remocon data output terminal           | 49         | RPON    | RP ON signal input terminal          |  |
| 10         | -       | Non connect                            | 50         | DPON    | DP ON signal input terminal          |  |
| 11         | SRDT    | Serial data read input terminal        | 51         | REMOFF  | Remocon OFF signal output terminal   |  |
| 12         | SWDT    | Serial data write input terminal       | 52         | CS2     | Chip select 2                        |  |
| 13         | SCLK    | Serial bus clock output terminal       | 53         | SCL     | Serial clock signal output terminal  |  |
| 14         | -       | Non connect                            | 54         | DI      | Data output terminal                 |  |
| 15         | BEEP    | BEEP output terminal                   | 55         | CS1     | Chip select 1                        |  |
| 16         | PSW     | Power ON/OFF output terminal           | 56         | MNT0    | Monitor 0 input terminal             |  |
| 17         | MONDATA | Test terminal                          | 57         | MNT3    | Monitor 3 input terminal             |  |
| 18         | MONCLK  | Test terminal                          | 58         | SENS    | DSP internal status input terminal   |  |
| 19         | XRST2   | Standby setting output terminal        | 59         | DO      | Data input terminal                  |  |
| 20         | TG      | Tracking gain setting terminal         | 60         | RESET   | Reset signal input terminal          |  |
| 21         | ACB     | Non connect                            | 61         | XINT    | Interrupt status data input terminal |  |
| 22         | TRAIN   | Non connect                            | 62         | SQSY    | Sink input terminal                  |  |
| 23         | XRST    | Reset signal output terminal           | 63         | -       | Non connect                          |  |
| 24         | XLAT    | Serial bus latch output terminal       | 64         | RPLY    | Remocon PLAY detect terminal         |  |
| 25         | LVCTL   | LSI power supply control signal output | 65         | DOOR    | Door open/close detect terminal      |  |
| 26         | LDON    | Laser diode ON signal output terminal  | 66         | PLAYKEY | PLAY key detect terminal             |  |
| 27         | RFOFF   | RF OFF signal input terminal           | 67         | VSS0    | GND                                  |  |
| 28         | SLOFF   | Sled OFF signal output terminal        | 68         | VDD1    | Reference voltage terminal           |  |
| 29         | -       | Non connect                            | 69         | X2      | Connect to X'tal osc                 |  |
| 30         | MUTE    | Mute signal output terminal            | 70         | X1      | Connect to X'tal osc                 |  |
| 31         | -       | Mon connect                            | 71         | VPP     | Test terminal                        |  |
| 32         | DIR     | Test terminal                          | 72         | XT2     | Non connect                          |  |
| 33         | VSS1    | GND                                    | 73         | XT1     | GND                                  |  |
| 34         | PS      | Standby mode output terminal           | 74         | VDD0    | GND                                  |  |
| 35         | SS      | Start/Stop output terminal             | 75         | AVD0    | Reference voltage terminal           |  |
| 36         | MON1    | Test terminal                          | 76         | KEY     | Remocon STOP key detect terminal     |  |
| 37         | MON2    | Test terminal                          | 77         | BATTERY | Battery voltage detect terminal      |  |
| 38         | MONXLAT | Test terminal                          | 78         | TEMP    | Connect to temp. detect              |  |
| 39         | -       | Non connect                            | 79         | ANI3    | GND                                  |  |
| 40         | -       | Non connect                            | 80         | ANI4    | GND                                  |  |

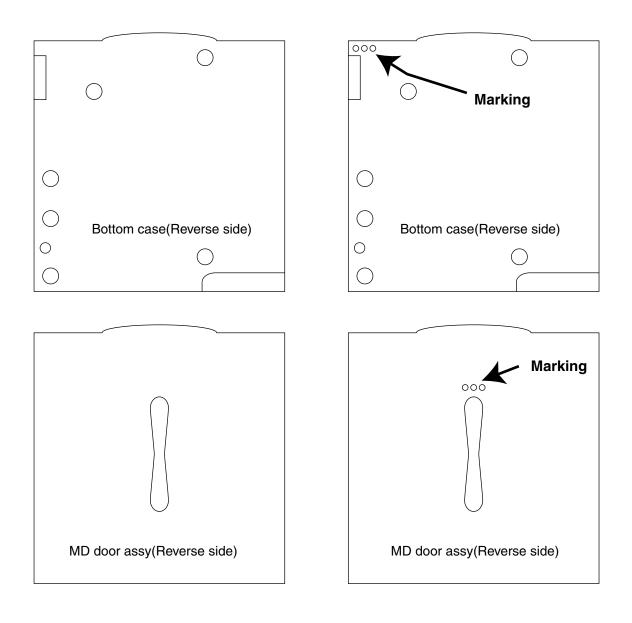

### **XC6367B101M-X (IC901,IC921,IC941):Regulator**

### 1.Pin layout



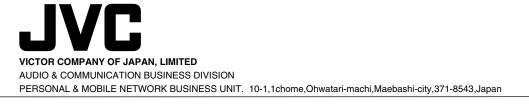
| Pin No. | Symbol | Function               |  |
|---------|--------|------------------------|--|
| 1       | FB     | Output voltage setting |  |
| 2       | VDD    | Power supply           |  |
| 3       | CE     | Chip enable            |  |
| 4       | GND    | GND                    |  |
| 5       | EXT    | Ext. Tr connection     |  |

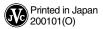
#### 3.Block diagram




2.Pin function

### Attention when parts are exchanged


The (2) bottom case and (35) MD door assembly are indicated on Exploded view of general assembly, there are two kind of parts at same color.


When you exchange parts confirm the marking and change same parts.



| Parts Number      | Marking non  | Marking have |
|-------------------|--------------|--------------|
| Bottom case (BU)  | LV10423-002A | LV10423-202A |
| Bottom case (PN)  | LV10423-003A | LV10423-203A |
| MD door assy (BU) | LV32219-002A | LV32219-202A |
| MD door assy (PN) | LV32219-003A | LV32219-203A |

WT is 1 kind of parts.



